

CFD Team Simulations for CAST

Manuel Gomez Marzoa, Enrico Da Riva CERN (EN/CV/DC)

46th CAST Collaboration Meeting 26-28/09/2011

□ What`s happening inside the magnet?

- A) Updates on thermal boundary conditions
- B) Updates on helium-3 properties
- □ Test cases
- CFD model
- □ Validation
- □ Sample results
- □ Future work

 \Box Because of heat conduction from the outer environment through the solid parts, the temperature of the window wall is higher than the cryostat set point.

□ Natural convection occurs at the window and helium-3 is heated up.

 \Box Hot & light helium enters the cold bore, is cooled down, falls to the bottom of the cold bore and comes back to the window.

□ The heat entering the fluid at the window is given back to the cryostat at the cold bore.

□ The phenomenon is due to the huge dependence of density on temperature.

• What's happening inside the magnet? **Boundary conditions improvement:** A) Updates on thermal boundary conditions **B)** Updates on helium-3 properties □ Test cases

- **CFD** model
- □ Validation
- □ Sample results
- □ Future work

Updates on thermal boundary conditions

Updates on Helium-3 properties

□ The c_p vs *T* correlation provided to the CFD Team was wrong (data reduced from Huang Y., Chen G., Arp V., Debye equation of state for fluid helium-3, Journal of Chemical Physics 125, 054505 (2006)).

□ The revised c_p used in the CFD simulations is computed by means of a preliminary Helmholtz equation of state for Helium-3 of Lemmon E.W. (2002) [REFPROP NIST, Boulder, CO, USA].

CFD team

□ What`s happening inside the magnet?

- A) Updates on thermal boundary conditions
- B) Updates on helium-3 properties
- Test cases
- CFD model
- □ Validation
- □ Sample results
- □ Future work

□ Steady-state

Horizontal position

"Cold windows":

Pressure	T_cold bore	T_WF1	T_WF2	T_WR1
[mbar]	[K]	[K]	[K]	[K]
43.65	1.73	20.0	18.3	13.2
67.50	1.73	19.5	17.8	11.5
83.39	1.76	19.0	16.5	11.2
97.60	1.73	18.5	17.3	10.4

"Hot windows":

Pressure [mbar]	T_cold bore	Tw_MFB1	Tw_MFB2	Tw_MRB1	Tw_MRB2
	1.00				
14.35	1.80	63.5	/0.0	64.5	66.5
26.40	1.85	68.5	72.5	68.7	72.1
37.10	1.80	61.8	64.3	60.6	64.8

What's happening inside the magnet?
 Boundary conditions improvement:

 A) Updates on thermal boundary conditions
 B) Updates on helium-3 properties

- Test cases
- **CFD model**
- □ Validation
- □ Sample results
- □ Future work

CFD Model

- □ Heat conduction occurs in the wall.
- □ Natural convection problem, strong coupling with energy equation.
- Turbulence must be taken into account.
- \Box Strong dependence of density, viscosity, c_p and conductivity on temperature.
- □ High accuracy is required.

- □ Coupled solver (i.e. energy and Navier Stokes equations are solved together).
- □ Turbulence model: low-Re k- ω SST without wall function.
- $\Box \text{ Mesh size} \sim 9 \ 10^6 \text{ cells.}$

What's happening inside the magnet?
 Boundary conditions improvement:

 A) Updates on thermal boundary conditions
 B) Updates on helium-3 properties

 Test cases
 CFD model
 Validation

- □ Sample results
- □ Future work

"Cold windows":

Pressure	Experimental mass	CFD mass	Deviation
[mbar]	[mol]	[mol]	[%]
43.65	9.49	9.54	0.5
67.50	15.18	15.28	0.6
83.39	18.89	18.91	0.1
97.60	23.11	23.19	0.3

"Hot windows":

Pressure [mbar]	Experimental mass [mol]	CFD mass [mol]	Deviation [%]
14.35	2.78	2.81	0.9
26.40	4.98	5.04	1.3
37.10	7.37	7.33	-0.6

□ What`s happening inside the magnet?

- A) Updates on thermal boundary conditions
- B) Updates on helium-3 properties
- Test cases
- CFD model
- □ Validation
- □ Sample results
- ☐ Future work

E. Da riva, M. Gomez Marzoa

14

Temperature distribution (p = 43 mbar)

MRB temperature section.

MFB temperature detail.

Influence of pressure

Natural convection is due to the dependence of density on temperature.
 At higher pressure the density change is larger.

 \Box At higher pressure the natural-convection phenomenon is stronger and the region with non-uniform density is wider.

 \Box What's happening inside the magnet?

- A) Updates on thermal boundary conditions
- B) Updates on helium-3 properties
- □ Test cases
- CFD model
- □ Validation
- □ Sample results
- **Future work**

Future Work

□ Transient simulations for the magnet tilting process are needed. The present computational approach is too demanding to perform a transient simulation for the tilting magnet case $(1 \sim 2 \text{ weeks to get convergence for steady-state simulations}).$

• A "lighter" computational approach will be tested for the steady-state horizontal magnet case:

- -) segregated solver instead of coupled solver.
- -) lower number of cells.

□ If possible, the "light model" will be used to solve the unsteady tilting case.

Thank you

E. Da riva, M. Gomez Marzoa

46th CAST Collaboration Meeting, 26-28/09/2011

